Differential binding of clonal variants of Plasmodium falciparum to allelic forms of intracellular adhesion molecule 1 determined by flow adhesion assay.
نویسندگان
چکیده
Adhesion of Plasmodium falciparum-infected erythrocytes to the endothelial ligand intercellular adhesion molecule 1 (ICAM-1) has been implicated in the pathogenesis of cerebral malaria. Recently, a high-frequency coding polymorphism in the N-terminal domain of ICAM-1 (ICAM-1(Kilifi)) that is associated with susceptibility to cerebral disease in Kenya has been described. Preliminary static adhesion assays suggested that two different selected P. falciparum lines, ITO4-A4 (A4) and ItG-ICAM (ItG), have different properties of binding to the natural variant proteins ICAM-1 and ICAM-1(Kilifi). Using a flow adhesion assay system, we have confirmed differences between the two lines in binding of parasitized erythrocytes to the variant ICAM-1 proteins. Total adhesion of ItG-infected erythrocytes to ICAM-1 and ICAM-1(Kilifi) is greater than that of A4-infected erythrocytes, and erythrocytes infected by both parasite strains show reduced binding to ICAM-1(Kilifi). However, under these physiologically relevant flow conditions, we have shown differences between A4 and ItG strains in dynamic rolling behavior on ICAM-1(Kilifi). The percentage of erythrocytes infected with A4 that roll on both ICAM-1 and ICAM-1(Kilifi) is greater than that of those infected with ItG. Also, the rolling velocity of A4-infected erythrocytes on ICAM-1(Kilifi) is markedly increased compared to that on ICAM-1, in contrast to the rolling velocity of ItG-infected erythrocytes, which is similar on both proteins. These findings suggest that different parasite lines can vary in their avidity for the same host ligand, which may have important consequences for the pathophysiology of P. falciparum malaria.
منابع مشابه
Fibrinogen binding to intercellular adhesion molecule 1: implications for Plasmodium falciparum adhesion.
Intercellular adhesion molecule 1 (ICAM-1) is an endothelial cell adhesion molecule implicated in cerebral malaria. We investigated whether fibrinogen affects Plasmodium falciparum binding to ICAM-1, as the ICAM-1 binding sites of P. falciparum and fibrinogen overlap. We show that fibrinogen dramatically reduces P. falciparum adhesion to ICAM-1 under flow conditions.
متن کاملPlasmodium falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques
BACKGROUND Cytoadherence of Plasmodium falciparum- infected erythrocytes to host cells is an important trait for parasite survival and has a major role in pathology of malaria disease. Infections with P. falciparum usually consist of several subpopulations of parasites with different adhesive properties. This study aimed to compare relative sizes of various binding subpopulations of different P...
متن کاملA functional analysis of a natural variant of intercellular adhesion molecule-1 (ICAM-1Kilifi).
Intercellular adhesion molecule-1 (ICAM-1) is involved in a range of interactions both within the host and between the host and a number of pathogens. Recently we described a mutation within the coding region of the first N-terminal immunoglobulin-like domain of ICAM-1, present at high frequency within African populations, which increased the risk of cerebral malaria. To understand the mechanis...
متن کاملSrc-family kinase signaling modulates the adhesion of Plasmodium falciparum on human microvascular endothelium under flow.
The pathogenicity of Plasmodium falciparum is due to the unique ability of infected erythrocytes (IRBCs) to adhere to vascular endothelium. We investigated whether adhesion of IRBCs to CD36, the major cytoadherence receptor on human dermal microvascular endothelial cells (HDMECs), induces intracellular signaling and regulates adhesion. A recombinant peptide corresponding to the minimal CD36-bin...
متن کاملRED CELLS CD 36 Peptides That Block Cytoadherence Define the CD 36 Binding Region for Plasmodium falciparum - Infected Erythrocytes
Mature Plasmodium falciparum parasitized erythrocytes (PE) sequester from the circulation by adhering to microvascular endothelial cells. PE sequestration contributes directly to the virulence and severe pathology of falciparum malaria. The scavenger receptor, CD36, is a major host receptor for PE adherence. PE adhesion to CD36 is mediated by the malarial variant antigen, P. falciparum erythroc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 68 1 شماره
صفحات -
تاریخ انتشار 2000